Sponsored Links
-->

Thursday, March 29, 2018

Formulas in Excel 1 - Round Numbers in Excel with Round Function ...
src: i.ytimg.com
"Round function" may also refer to rounding.

In topology and in calculus, a round function is a scalar function M -> R {\displaystyle M\to {\mathbb {R} }} , over a manifold M {\displaystyle M} , whose critical points form one or several connected components, each homeomorphic to the circle S 1 {\displaystyle S^{1}} , also called critical loops. They are special cases of Morse-Bott functions.


Video Round function



For instance

For example, let M {\displaystyle M} be the torus. Let

K = ( 0 , 2 ? ) × ( 0 , 2 ? ) . {\displaystyle K=(0,2\pi )\times (0,2\pi ).\,}

Then we know that a map

X : K -> R 3 {\displaystyle X\colon K\to {\mathbb {R} }^{3}\,}

given by

X ( ? , ? ) = ( ( 2 + cos ? ) cos ? , ( 2 + cos ? ) sin ? , sin ? ) {\displaystyle X(\theta ,\phi )=((2+\cos \theta )\cos \phi ,(2+\cos \theta )\sin \phi ,\sin \theta )\,}

is a parametrization for almost all of M {\displaystyle M} . Now, via the projection ? 3 : R 3 -> R {\displaystyle \pi _{3}\colon {\mathbb {R} }^{3}\to {\mathbb {R} }} we get the restriction

G = ? 3 | M : M -> R , ( ? , ? ) ? sin ? {\displaystyle G=\pi _{3}|_{M}\colon M\to {\mathbb {R} },(\theta ,\phi )\mapsto \sin \theta \,}

G = G ( ? , ? ) = sin ? {\displaystyle G=G(\theta ,\phi )=\sin \theta } is a function whose critical sets are determined by

g r a d   G ( ? , ? ) = ( ? G ? ? , ? G ? ? ) ( ? , ? ) = ( 0 , 0 ) , {\displaystyle {\rm {grad}}\ G(\theta ,\phi )=\left({{\partial }G \over {\partial }\theta },{{\partial }G \over {\partial }\phi }\right)\!\left(\theta ,\phi \right)=(0,0),\,}

this is if and only if ? = ? 2 ,   3 ? 2 {\displaystyle \theta ={\pi \over 2},\ {3\pi \over 2}} .

These two values for ? {\displaystyle \theta } give the critical sets

X ( ? / 2 , ? ) = ( 2 cos ? , 2 sin ? , 1 ) {\displaystyle X({\pi /2},\phi )=(2\cos \phi ,2\sin \phi ,1)\,}
X ( 3 ? / 2 , ? ) = ( 2 cos ? , 2 sin ? , - 1 ) {\displaystyle X({3\pi /2},\phi )=(2\cos \phi ,2\sin \phi ,-1)\,}

which represent two extremal circles over the torus M {\displaystyle M} .

Observe that the Hessian for this function is

h e s s ( G ) = [ - sin ? 0 0 0 ] {\displaystyle {\rm {hess}}(G)={\begin{bmatrix}-\sin \theta &0\\0&0\end{bmatrix}}}

which clearly it reveals itself as rank of h e s s ( G ) {\displaystyle {\rm {hess}}(G)} equal to one at the tagged circles, making the critical point degenerate, that is, showing that the critical points are not isolated.


Maps Round function



Round complexity

Mimicking the L-S category theory one can define the round complexity asking for whether or not exist round functions on manifolds and/or for the minimum number of critical loops.


Excel Ceiling Round Up | www.energywarden.net
src: cdn.ablebits.com


References

  • Siersma and Khimshiasvili, On minimal round functions, Preprint 1118, Department of Mathematics, Utrecht University, 1999, pp. 18.[1]. An update at [2]

Source of article : Wikipedia